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New Equipartition Results for Normal Mode 
Energies of Anharmonic Chains 
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The canonical and microcanonical distributions of energy among the normal 
modes of an anharmonic chain with nearest-neighbor interactions and free ends 
are examined. If the interparticle potential is an even function, then energy is 
distributed uniformly among the normal modes at all energy densities. If the 
interparticle potential is not an even function but includes quadratic, cubic, and 
quartic terms, then the energy sharing among the normal modes is also uniform 
in both the small- and large-energy density limits. At large energies, in this latter 
case the energy per normal mode scales as the square root of the energy density. 
Thus we find equipartition of energy among the normal modes of an anhar- 
monic chain. The sum of the normal mode energies is less than the total energy 
of the chain. 

KEY WORDS:  Equipartition of energy; ergodic hypothesis; anharmonic 
chains; normal modes; nonlinear lattice dynamics. 

1. I N T R O D U C T I O N  

In the harmonic approximation the vibrations of a lattice can be repre- 
sented by a superposition of normal mode vibrations, t~) The equilibrium 
statistical mechanics principle of equipartition of energy asserts that in the 
harmonic approximation the energy of the lattice should be equally shared 
among these normal modes. (2) This result is in agreement with experi- 
mental measurements on the specific heat of crystals in a temperature 

t Department of Applied Mathematics, University of New South Wales, Sydney NSW 2052, 
Australia. 

2 Department of Physics and Astronomy, McMaster  University, Hamilton, Ontario, L8S4M1, 
Canada. 

3 Current address: Faculty of Mathematics, Open University, Milton Keynes, MK7 6AA, 
United Kingdom. 

1039 

0022-4715/95/0200-1039507.50/0 �9 1995 Plenum Publishing Corporation 



1040 Henry and Szeredi 

regime where the classical approximation is valid (see, for example, 
ref. 3). However, equilibrium statistical mechanics is founded on the 
postulate of a priori equal probabilities for all microstates subject to the 
macroscopic constraints (e.g., constant energy, constant pressure, constant 
temperature) and there is no dynamical justification for this postulate 
in the case of an isolated harmonic chain with two or more degrees of 
freedom. 

The traditional dynamical justification of equilibrium statistical 
mechanics rests on establishing the ergodic hypothesis. This hypothesis 
states that in an isolated system the dynamical trajectory uniformly visits 
(or comes arbitrarily close to) all points on the energy surface. 14~ However, 
the harmonic lattice at constant energy (with two or more degrees of 
freedom) is not ergodic. The energy of each mode is itself a conserved 
dynamical quantity and hence the dynamics is confined to a lower-dimen- 
sional surface than the energy surface. More generally, systems with more 
than one degree of freedom that can be decoupled into normal modes are 
not ergodic. 

It used to be assumed that the introduction of small nonlinearities in 
the interparticle interactions could provide a dynamical basis for energy 
sharing and ergodicity while still (to a good approximation) preserving 
the equipartition principle among the normal modes. Commencing with 
the classic numerical studies of Fermi, Pasta, and Ulam, 151 it was found 
that the introduction of small nonlinearities did not, in fact, provide a 
mechanism for uniform energy sharing among the normal modes. Con- 
current and subsequent algebraic work now known as the KAM theorem 
(see, for example, ref. 6 for a discussion in the context of anharmonic 
chains) showed that the inclusion of small nonlinearities is in general insuf- 
ficient to bring about ergodicity. As demonstrated in the numerical work of 
Henon and Heiles, 17~ larger nonlinearities are required to destroy the 
conserved dynamical quantities and thus allow the possibility of ergodicity. 
However, at larger energies the total system energy can no longer be 
represented by a sum of the normal mode energies and it is far from clear 
in this case if equipartition of energy among the normal modes should still 
apply----even if the system is now ergodic. One possibility is to define a new 
set of nonlinear mode energies, each of which contains a normal mode 
energy as a subset but the sum of which is equal to the total system energy. 
This prescription is, however, not unique and numerical studies have 
demonstrated no energy equipartition among such a set. ~8~ Furthermore, 
Tolman's generalized equipartion principle ~'-I when applied to anharmonic 
chains defines a new set of quantities (not identifiable as modes) among 
which equipartition must occur. Despite this, numerous researchers have 
pursued the question of uniform energy sharing among the normal modes 
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of anharmonic chains in higher nonlinear regimes (see, for example, refs. 6, 
9, and 10 and references therein). Moreover, equipartition of energy among 
the normal modes has been postulated as a test for ergodicity in some of 
these studies. A major aim of this research has been to establish whether 
or not there is a critical energy density threshold above which equipartition 
is obtained. 

It is clear that normal mode energies and the principle of equipartition 
of energy have been and still are important concepts in analyzing both 
linear and nonlinear systems. Yet to our knowledge, no one has pursued 
the question of whether or not there should be equipartition of energy 
among the normal modes of an anharmonic lattice assuming at the outset 
that the postulate of a priori equal probabilities for all microstates is 
satisfied (e.g., assuming ergodicity from the outset). This important ques- 
tion is the focus of our work. We find that if the interparticle potential is 
an even function, then energy is distributed uniformly among the normal 
modes at all energy densities. If the interparticle potential is not an even 
function but includes quadratic, cubic, and quartic terms (the generic case 
for an archetypical anharmonic chain), then the energy sharing among the 
normal modes is also uniform in both the small- and large-energy density 
limits. We thus come to the rather surprising conclusion that even in a 
regime where most of the energy is contained in the nonlinear terms there 
is still equipartition of the remaining energy among the normal modes. 
As an added result, we identify a set of nonlinear mode energies for the 
quadratic plus quartic nonlinear Hamiltonian which equipartition the total 
system energy. 

2. M O D E L  A N H A R M O N I C  LATTICE 

We consider a chain of N =  (2n + 1) equimass particles coupled by 
nearest-neighbor linear and nonlinear forces with free ends. Let xj denote 
the displacement of the j th  particle from its equilibrium position and pj 
denote its conjugate momentum; then the Hamiltonian (in dimensionless 
variables) describing the chain is given by 

where 

H = H o +  ~ f ( x j + ~ - - x j )  (1) 
j =  - - n  

p? " 1 

j = - ,  2 j = - .  
(2) 
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is the harmonic  Hami l ton ian  and f(xj+ t-xj)  is an a rb i t ra ry  anharmonic  
function which depends only on the difference (xj+~-xj), The free-end 
bounda ry  condi t ions  are given by 

x - "  = x - c " +  l) (3) 

X n  ~-- X n  + 1 

The harmonic  Hami l ton ian  with free end boundar ies  may be diagonal ized 
by the normal  mode t ransformat ions  

f a o -- x/7~ j = _ .  Xj 

a,,,= ~ j=Z,xjc~ N J' 

2 '/: " 1)), 

t o g e t h e r  with the identities 

Explicit ly 

m = 1, 2 ..... n (4) 

m = 1, 2, . . . ,  n 

f [rEj2m'~ ( ~ )  N 6 cosvw-)cos . . . . . .  

j =  --n 

f sin(rCj(2N-l))sin(~j(2m---N-1))-N6~. 
-- -~ m,  tit" 

j =  - - n  

(5) 

H o = gl?~+ ~ aT,,,'" + b.,'2 +~ a)~,,,am+CO.~.,_,b.,, , . 2 (6) 
m = l  1 

where the normal  mode  frequencies are defined by 

( ~ k )  
co k = 2 sin ~-~ (7) 

Note  that  ao does not  appear  in the Hami l ton ian  (6), and hence 
~io = (1/x/~)(Zj~= _ ,  2j) is a constant  of the motion.  This is simply inter- 
preted by not ing that  the center-of-mass momen tum is conserved. The har-  
monic  Hami l ton ian  is now a sum of normal  mode  energies, H o = Z ~ 2 o  ~ ~k, 
where 

l ~  l 2 2  ( 8 )  

Co = ao, C2m = am, and c2 .. . .  ~ =bm for m = l,  2 ..... n. 
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3. C A N O N I C A L  ENSEMBLE AVERAGE M O D E  ENERGIES 

In this section we describe the calculation of the canonical averages of 
the mode energies ~k. The canonical averages are defined by 

1 f~ f i  dpidxiekexp(-flH) (9) 
( ~ k )  - Z ( N ,  fl--~) _ ~  , =  - .  

where the normalization is the partition function 

Z(N, fl)=f 1-[ dpidx, exp(-flH) (10) 
- - c ~  i =  - - I t  

We shall have need to refer to both the normalized ( . )  and the unnor- 
malized ( . ) *  canonical ensemble averages in the following. The partition 
function for the anharmonic chain described by Eqs. (1)-(3) factors as 

Z(N, r)=Zp(N, r) Z.,.(N, r) (11) 

where the momentum contribution is 

zp(g, r)= oo i= - n  dpi i= - , ,  exp - f l  c~ N i  n P i  (12) 

and the configurational contribution is 

Zx(N, f l )= d x  i exp --fl (Xi+ 1 - - X i ) 2 " q - f ( X i + l - - X i )  
- - Q O  i =  - - / I  i =  - - t I  

\N,(1 " ,, d )  (13) x 6 ~_ x,-  

The delta functions appearing in Eqs. (12) and (13) ensure that the center 
of mass of the chain is held fixed (at ~); without this constraint the free 
energy would in general be infinite. 

The momentum contribution readily simplifies after a transformation 
to the normal mode coordinates (the Jacobian of the transformation is 
unity) as follows: 

Zp(N, I~)= dci6 I-~ exp --[ i '  
- - ~  i = 0  i = 0  

= exp - 3  d~i (14) 
i = 1  
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The remaining integration is now trivial, resulting in 

zAu, fl)= (15) 

The canonical average mode kinetic energy is now readily calculated as 

O = 2-'-fl for k = l ,  2 ..... N - 1  (16) 

in accordance with the equipartition principleJ 2~ 
To simplify the configurational contribution we first introduce the 

relative coordinate and center-of-mass coordinate transformations 

~)i=X_n+i--X_n+i_l for i = 1 , 2  ..... N - 1  
(17) 

1 n 

~,~=-~ ~ x, 

It is a simple exercise to confirm that the Jacobian of the transformation 
is unity and the inverse transformation is defined by 

N 

x _ , , + i _ l =  ~ Ai~-}~j for i = 1 , 2  ..... N (18) 
j = l  

where 

( ( j - N ) / N  for j>~i, j = l , 2  ..... N - 1  
/ 

A ~ I = ~ j / N  for j < i ,  j = l , 2  ..... N - 1  (19) 

(1 for j =  N 

With the above transformations the configurational contribution to the 
partition function simplifies to 

Z.,.(N, f l )= f 6(~bN--~) d~bN I-I J" exp - f l  + f(cki) d(bi (20) 
- o c .  i =  - - ~ 3  

It is convenient to write this as 

u - I  (21) Z.,.(N, fl) = z o 
where 

; 1} zo = exp - f l  + f ( ~ )  d~ (22) 
--O2- 
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Combining the normal mode transformations, Eq. (4), with the coordinate 
transformations defined by Eqs. (18) and (19), we can write the canonical 
ensemble average mode potential energies in the form 

<~w~,,,a~.> =w~'' ~. c o s ( - ~ ) c o s ( 2 ~ J - - - - ' ) B j /  
N .i./= -,, (23) 

<~o9~ .... ,bZ,,, > o9~_,,_, ~ sin((2mNl)nJ)sin((2mNl,rtj' ) 
- N Bjj, 

j , j '  = - - .  

where 

N 

B)).= ~. A~.'Ajzk!<OkCk, ) (24) 
k , k ' = l  

The canonical ensemble averages <r = <r simplify as follows: 

((z,/zo) 2 for i~j (r 
~z2/zo for i=j (4:N) 

<r ~ for i~j (=N)  
[.q~2 for i=j (=N)  

(25) 

where 

Zk=f~_" Okexp{--[J[C--~2+f((~)]} for k = 0 ,  1,2 (26) 

The canonical ensemble averages defined by Eqs. (23)-(26) appear to 
be cumbersome, but evaluating the sums leads to remarkable simplifica- 
tions. We first consider the case wheref(r  is an even function. In this case 
the potential is also an even function and z~ =0. The canonical average 
mode potential energies now reduce to 

0)2,.- I = 

(27) 

Hence the canonical average mode energy is the same for all modes and is 
given by 

1 z~ 
<ek> = 2-fl + ~-~o (28) 
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This result establishes that, starting with the assumptions of equilibrium 
statistical mechanics, energy will be uniformly shared among the normal 
modes of the anharmonic chain described by Eqs. (1)-(3) provided that the 
anharmonic function f ( r  is an even function of r 

In the case of more general potentials there is equipartition of energy 
among half the modes (a,,) but not among the other half (b,,). The result 
for the a,, modes is 

1 
for r e = l ,  2 ..... n (29) 

We have been unable to find explicit algebraic expressions for the canonical 
ensemble average potential energy in the b,,, modes as a function of the 
number of particles in the chain. However, using the algebraic symbol 
manipulation package MAPLE, we have identified the following pattern of 
behavior: 

1 . 2 \ : 1 [ z 2  (zlx}21 
~o;_ .... lb.,? 2mzo+d ' (N) \ zo /  A for r e = l , 2  ..... n (30) 

where d t ( 3 ) = l ;  d~(N) increases monotonically with N; d,,,(N)<O for 
r e > l ;  dj(N)>dk(N) for j < k ;  and limN~o~ d,,( N) --* --1. We have also 
found that the sum rule 

~ ,  nz.~ 1 , , 1 ( b ~ )  = - - - :  ( 3 1 )  ,.= -~o~,~ +-~o~m_, Zo 

holds in general for both even and noneven potentials. It follows from 
Eq. (30) that we can expect approximate equipartition of energy among the 
bm modes, too, in regimes where (z~/Zo) 2 is negligible compared with 
(z21zo). 

4. M I C R O C A N O N I C A L  ENSEMBLE AVERAGE 
M O D E  ENERGIES 

The microcanonical averages of the mode energies are defined by 

1 foo f l  dp~dxiekf(H- E) (32) 
<8k>• = ~2(N, E-""~ - ~ ,  . . . .  

where the normalization is the phase space volume of the energy shell, 

f2(N, E) = dp, dx~ 8 ( H -  E) (33) 
- c o  i= - n  
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It can be readily seen from Eqs. (10) and (33) that the canonical partition 
function Z(N, fl) is the Laplace transform of the energy shell volume 
f2(N, E), 

Z(N, ~)= I ~ g2(N, E)e -~E dE (34) 
J o  

Similarly the unnormalized ensemble averages are related by 

Hence 

( s ) * =  ( s ) * e - a e d E  (35) 

2 ' - ' [ (ek)  *] 
( e k ) a  = s fl)] (36) 

where 2#-1 denotes the inverse Laplace transform operator (with respect 
to fl). We shall use Eq. (36) to calculate the microcanonical ensemble 
averages in the following. 

We first note that it follows immediately from Eq. (36) that if (ek)*  
are the same for all modes, then ( E k )  a are  also the same for all modes. 
Hence from Eq. (28) we deduce that if the isolated anharmonic chain 
described by Eqs. (1)-(3), with f(~b) an even function of ~b, was ergodic, 
then starting from any initial energy distribution, eventually all modes 
would acquire, on average, uniform energy content. This result would still 
hold if the sum of the average mode energies was much less than the total 
energy of the chain. 

In more general potentials where f(~b) is not an even function of ~b the 
microcanonical average mode kinetic energies are the same for all modes, 
whereas the microcanonical average potential energies are, from Eqs. (29), 
(30), and (36), given by 

1 2 

I[Z(N,#)] 

(37) 

l [Z(N~fl)]  (38) 
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Recognizing that the inverse Laplace transform operator is a linear operator 
and expanding the denominator in the above, we expect equipartition of the 
normal mode energies in regimes where 

, ~ - -  1 r- 2 _ N - -  1)/2"] LZl.,O 3(2n/fl)(u- 
~(N, E ) =  (39) 

s lEz ~ -  '(2x/fl) (N-1)/2-] 

is negligible compared with 

-iEz2z, ~ -  2(2=//~)(N- ,)/2] 
~(N, E)= (40) 

- i Ez ~ -  ,(2x/fl)~N- 1)/2] 

We are particularly interested in the scaling of these terms with the energy 
density E/N. 

5. A S Y M P T O T I C  R E S U L T S  

In the following we carry out an asymptotic analysis of ~(N, E) in the 
small- and large-energy density limits for the anharmonic chain described 
by Eqs. (1)-(3) with f(~b)=-(2/3)~b3+(#/4)~b 4, where 2 and # are 
positive constants. The potential in this model, 

v(~)=~2_~2 3+~4 (41) 

can be regarded as the first few terms in a Taylor series expansion for more 
general potentials. This potential is "archetypical" for anharmonic chains. 
It encompasses the paradigmatic anharmonic models studied by Fermi 
et al. (5) and Henon and Heiles. (7) The physically interesting Lennard-Jones 
potential (3~ expanded about its equilibrium points can also be written in 
this form (as indeed can any other interparticle potential with a minimum). 
For example, it is a simple exercise to show that in the Lennard-Jones 
approximation 2 = 10.5 and p = 61.8. The Lennard-Jones potential gives us 
physically realistic parameters which will guide us in assessing the accuracy 
of our approximations in the following analysis. 

First we consider the large-fl behavior of the integrals appearing in 
Eqs. (39) and (40), 

f 
ct3 

zk= (/exp[--flV((~)]dr for k = 0 ,  1,2 (42) 
-c .o  

The asymptotic analysis is straightforward using the method of Laplace 
(see, for example, Chapter 2 of ref. 11). The major contribution to the 
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integral Zk as fl--* 0% comes from the neighborhood of the point where 
V(~b) has its minimum value. For the potential considered in Eq. (41) with 
parameter values in the vicinity of the Lennard-Jones approximation there 
is a single minimum at ~=0,  V(~)=0. The integral, Eq. (42), is approx- 
imated by expanding V(~b) about its minimum and introducing a change of 
variables x z= V(~b)-V(~). Retaining the dominant two terms in the 
expansion for the change of variables gives 

- - x  2 + O(x 3) (43) q~- x -  3(VI2~)2 

where V f'l denotes the nth derivative of V(r evaluated at ~b=0. In 
Laplace's method only the leading term in the expansion of V(~b) is 
retained in the exponential contribution and hence 

( 2 "~(k+l)/2 ~ 
Zk(fl) ~ \ ' - ~ )  f_~  X k exp(--fix 2) dx 

(2  U- v,3, 
- (k + 2) \~N55 j 3( V12))2 f_~ xk+lexp(--flx2)dx (44) 

For the potential in Eq. (41) we now obtain the asymptotic results 

( '~ )  z-22f12, z~ l _ z o  fl (45) 

Thus in the large-fl limit, ~(N, E) is dominated by c~(N, E) and Eq. (38) 
predicts equipartition of energy among the normal modes. This is not sur- 
prising because the large-fl limit is essentially the small-energy limit where 
the harmonic behavior should dominate. The dependence on the energy 
density is found by calculating the inverse Laplace transforms in Eqs. (39) 
and (40). This yields the small-E asymptotic scaling dt~22(E/N) 2 and 
a~E/N,  which establishes equipartition of energy in the small-energy 
density limit. 

To investigate the small-fl limit we first introduce a change of variables 
y = q~fll/2; then for fl small 

(~)lk+,,/2f~j~ e x P ( 3 ~ y 3  ~-~fl ) d y  (46) a_ yk _ y4 Zk 

where the approximation omits the factor exp( ~ 2) - i y  from the integrand. 
The accuracy of the approximation can be quickly assessed through 
numerical comparisons. For example, at fl= 10 -4 with 2 and I~ values 
appropriate for the Lennard-Jones approximation the "exact" values are 
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Zo=9.134 .... z, =0.515 .... z2=78.5 .... whereas the approximate values are 
Zo,~9.138 .... zl ~0.516 .... z2-~ 78.4 .... The usefulness of the approximations 
is that each of the integrals in Eq. (46) can now be calculated algebraically. 
Using the algebraic symbol manipulation package MATHEMATICA, we 
find 

s 2F2 [ ( 1 ,  5 ) ,  (~, ~) //-,/4 

3`] 2 4 
q- 9~7/4 

j~l/4 

2 4 
2' /22s z i "~ 61~ 514 - 

(47) 
271Z23F(ll14) F [-{11 19) f/3 Z) ] 2 4  + 

2'/'/'(3/4) [//711) (! 3"] 2 4 ]/~--3]4 
z2~ #x3/4 >GLt,12' 12.]' t ,2'4) '  12#.i 3/7 

2m222/'<9/4, [ ( 1 3 1 7 )  (~ 3"] 24 ] 
+ ~F2 9 p  9/4 " "i'2''i'2 ' ' 2 ) '  12/a 3/~ f l - i / 4  

where zF2[-] denotes the generalized hypergeometric function, whose 
behavior for small/7 goes as ~ 1 + 0(/7) (see, for example, ref. 12, p. 585). 
We now substitute the above approximations into Eqs. (39) and (40), 
retaining only the first two leading-order terms in an expansion for 
small /7. Finally, after carrying out the inverse Laplace transforms (see, 
for example, ref. 12) in the numerators and denominators we obtain the 
limiting (large E) behavior 

22 ( . 822F'(3/4)F((3N-3)I4)E_U2 ) 
02(N,E) 9# 2 1  " - -  + 9#3/2s F((3N-- 5)/4) 

(48) 
2s s  3)/4) E,/2 

~(N, E) ,.. ~/2s r ( (3N-  1)/4) 

2 2 1 

x 149p3/2 F( (3N-  3)/4) /"(3/4) s 

3(1 - n) s 2 s 3)/4) 2 
x s  5)/4) 

[3 \  2 5 
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Thus the small-fl analysis reveals that at large energies, a(N, E) dominates 
a(N, E) and again we expect equipartition of energy among the normal 
modes. In the limit N ~  ~ the expressions in Eq. (48) can be simplified 
further using Stirling's asymptotic result, lim,.~o~F(x+l)~(2nx)mx 
xXe-~[1 + O(x-~)] ,  together with the identity e -'b =limN~ ~o(1--a/N)t'N; 
we have 

a(N,E)~--  1 + O  9# z 
(49) 

4F(3/4) ~(N,E)~31/2F(1/4)I~,/2 (E) m { I + o ([E]-I/2) } 

Hence equipartition of energy also holds for large N when the energy 
density E/N is large. We note in this latter case that the energy in the nor- 
mal modes [~~(N,  E)]  scales as the square root of the energy density 
rather than directly as the energy density. 

6. S U M M A R Y  A N D  D I S C U S S I O N  

The equilibrium statistical mechanics principle of equipartition of 
energy among the normal modes of a harmonic chain has long been a 
puzzling result. It is experimentally supported by specific heat measurements 
at temperatures where the classical approximation is valid. However, there 
is no theoretical dynamical justification for the application of equilibrium 
statistical mechanics to the harmonic chain. Efforts to circumvent the 
theoretical difficulties by considering anharmonic chains face an immediate 
paradox: Anharmonic interactions are required to allow exchanges of 
energies among the normal modes, but in an anharmonic lattice the equi- 
librium statistical mechanics generalized equipartition principle ~2J should 
be employed and it is not clear that this is consistent with equipartition of 
energy among the normal modes. The anharmonicity should be sufficiently 
strong to overcome the restrictions of the KAM theorem, but sufficiently 
weak to approximate the conditions for equipartition of energy among the 
normal modes. The situation has been made all the more puzzling by a 
series of numerical experiments that report equipartition of energy among 
the normal modes of an anharmonic chain above a critical energy density 
threshold ~3) (i.e., for sufficiently strong anharmonicity). 

In this paper we assumed that the conditions for equilibrium statistical 
mechanics were satisfied at the outset for an anharmonic chain with 
nearest-neighbor interactions and free ends, and we calculated the canoni- 
cal and microcanonical averages for the normal mode energies of the chain. 
We found the surprising result that in the case where the interparticle 

822/78/3-4-25 
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potential is an even function of its argument, equipartition of energy 
among the normal mode energies is still an exact result independent of how 
strong the anharmonicity is (how much energy is contained in the anhar- 
monic terms). Noneven potentials including quadratic, cubic, and quartic 
terms were also considered and here, too, using an asymptotic analysis it 
was found that there is equipartition of energy among the normal modes 
in both the low- and high-energy regimes. 

As a final remark we note that in the (quartic) Hamiltonian described 
by Eq. (1) with f(~b)= (/.t/4)q~ 4 we can identify a set of nonlinear mode 
energies whose sum is equal to the total energy of the chain and which 
equipartition the energy among them. Following ref. 8, we define the non- 
linear mode energies by 

1 OHo 1 01to+1 
~ '  = 2 c/' --ff~-k + 2 Ck Oc k 4 cj' 

O(H- Ho) 
OCk 

(50) 

where Ck is a mode position coordinate. The change of e~' with time is a 
function only of intermode energy flows, whereas the change in the normal 
mode energies ek with time depends on both intermode energy flows and 
intramode energy flows, r It is a simple exercise to show that Zk e~' = E. 
Furthermore, combining the results that (Ok OHo/Okk) is the same for all 
modes and (Ck OHo/OCk) is the same for all modes (equipartition of energy 
among the normal modes) together with the result that (Ck OH/OCk) is the 
same for all modes (Tolman's generalized equipartition principle), it 
follows immediately that ( e * )  is also the same for all modes. 
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